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Abstract For the past few decades, human activities have
intensively increased the reactive nitrogen enrichment in
China’s coastal wetlands. Although denitrification is a critical
pathway of nitrogen removal, the understanding of denitrifier
community dynamics driving denitrification remains limited
in the coastal wetlands. In this study, the diversity, abundance,
and community composition of nirS-encoding denitrifiers
were analyzed to reveal their variations in China’s coastal
wetlands. Diverse nirS sequences were obtained and more
than 98% of them shared considerable phylogenetic similarity
with sequences obtained from aquatic systems (marine/estua-
rine/coastal sediments and hypoxia sea water). Clone library
analysis revealed that the distribution and composition of
nirS-harboring denitrifiers had a significant latitudinal differ-
entiation, but without a seasonal shift. Canonical correspon-
dence analysis showed that the community structure of nirS-
encoding denitrifiers was significantly related to temperature
and ammonium concentration. The nirS gene abundance
ranged from 4.3 × 105 to 3.7 × 107 copies g−1 dry sediment,
with a significant spatial heterogeneity. Among all detected

environmental factors, temperature was a key factor affecting
not only the nirS gene abundance but also the community
structure of nirS-type denitrifiers. Overall, this study signifi-
cantly enhances our understanding of the structure and dy-
namics of denitrifying communities in the coastal wetlands
of China.

Keywords Denitrification . nirS gene . Coastal wetlands .

Temperature . Abundance . Community structure

Introduction

Over the past several decades, reactive nitrogen (Nr) input has
incredibly increased because of human activities (Galloway
and Cowling 2002; Galloway et al. 2008). By 2050, the nitro-
gen delivery in most regions is predicted to reach
50 kg N ha−1 year−1 to afford the still-growing human popu-
lation (Galloway et al. 2004). The acceleration of Nr is attrib-
uted mainly to industrial production of nitrogen fertilizer and
combustion of fossil fuel which contribute about
1.48 × 1013 mol N year−1 (Canfield et al. 2010; Vitousek
et al. 1997). Although the increasing input of Nr has enabled
humans to greatly improve crop yield, considerable Nr is
eventually transported into estuarine and coastal wetlands
through river flow, groundwater discharge and atmospheric
deposition (Boyer et al. 2006; Seitzinger 2008), which has
caused a series of environmental problems such as aquatic
eutrophication, harmful algal bloom and hypoxia (Earl et al.
2006; Gruber and Galloway 2008; Howarth 2008). Therefore,
it is of significance to study the nitrogen removal and associ-
ated microbial mechanisms for protecting and improving wa-
ter quality in estuarine and coastal environments.

Denitrification, the dissimilatory reduction of oxidized N
compounds (NO3

− and NO2
−) to gaseous nitrogen (including
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NO, N2O, and N2), has been considered an effective microbial
nitrogen removal process (Falkowski et al. 2008; Zumft
1997). This process contributes more than 70 % of the nitro-
gen loss in natural ecosystems, which is much higher than
anammox process (Babbin et al. 2014; Dalsgaard et al.
2012). Thus denitrification plays a crucial role in controlling
nitrogen fate (van Breemen et al. 2002). Diverse types of
metabolic enzymes, including nitrate reductases (Nar), nitrite
reductases (Nir), nitric oxide reductases (Nor), and nitrous
oxide reductases (Nos), catalyze the denitrification process
(Zumft 1997). In particular, Nir catalyzes the rate-limiting step
in denitrification, which is encoded by nirK and/or nirS genes
(Braker et al. 2001). Although these two genes are structurally
different, enzyme types are functionally and physiologically
similar (Coyne et al. 1989). Compared with nirKwhich is also
contained in nitrifiers (Cantera and Stein 2007), nirS is found
to be more widely distributed in natural environments (Braker
et al. 1998). Therefore, nirS has been most frequently used for
functional biomarkers of denitrifying community.

China has contributed far more Nr than other countries, due
to large population and rapid agricultural and economic devel-
opment (Cui et al. 2013). Over the past century, Nr emission had
increased from 9.2 to 56 Tg year−1 in China (Cui et al. 2013),
and the majority of the Nr is delivered into the environment
(Galloway and Cowling 2002; Wang and Wang 2009). At pres-
ent, the estuaries and coastal seas of China have greatly suffered
from the severe Nr pollution (Cui et al. 2013; Zhao et al. 2012).
Although the important role of denitrification in the nitrogen
removal is identified, little is known about the dynamics of de-
nitrifiers in the nitrogen-enriched environments. The objectives
of this study are to investigate the abundance, diversity, and
distribution of nirS-harboring denitrifiers along the coastal wet-
lands of China and to explore the underlying interactions among
the dynamics of denitrifiers, environmental parameters, and
denitrifying activities in the wetland ecosystem.

Materials and methods

Study area

The coastal regions of China cover an area over three million
square kilometers, with a 32,000 km coastline (Wang 1992).
In China, the development of coastal regions has made a sig-
nificant contribution to the national economy, harboring more
than 60 % of China’s gross domestic product (He et al. 2014).
Over the past two decades, the coastal wetland areas have
decreased 3.38 × 106 ha, with a total loss rate of 9.33 %
(Wetland China 2014). The loss of the coastal wetlands is
mainly attributed to the increasing growth of population in
the coastal zone, which was coupled with rising coastal urban
areas, economic growth, rapid urbanization, and infrastructure
development (He et al. 2014; Shi et al. 2015). In addition, the

interference of human activities has caused a series of ecolog-
ical changes in China’s coastal wetland ecosystems, such as
the losses of biological habitat, productivity, and diversity
(Lin et al. 2007; Sun et al. 2015; Xie et al. 2010).

Sample collection

In this study, sediment samples were collected from eleven sites
(P1 to P11) located in the coastal wetlands of China (including
Dandong, Tangshan, Weifang, Qingdao, Lianyungang,
Shanghai, Wenzhou, Fuzhou, Shantou, Zhuhai, and Beihai)
(Fig. 1), ranging from high latitude sites (P1 to P6) to low lati-
tude sites (P7 to P11). The numbering scheme for sampling sites
decreases with latitude. Field work was conducted in winter
(January) and summer (August) 2014, respectively. Triplicate
sediment samples (0-5 cm) were collected with PVC cores at
each site. The core sediments were transported to the lab on ice
and immediately homogenized as one composite sample under
helium condition. A fraction of the composite sample was ar-
chived at −80 °C until DNA isolation and used for microbial
molecular analysis. The remaining sample was stored at 4 °C for
analyses of sediment physicochemical parameters and
denitrification activity. The data on sediment properties and
denitrification rates in these collected samples have been given
in Hou et al. (2015) (Table S1 and Fig. S1).

PCR amplification, cloning, and phylogenetic analysis

Total genomic DNAwas extracted from ~0.3 g sediment with
PowerSoil DNA isolation kits (MoBio, USA). The nirS gene
fragment (encoding cytochrome cd1-containing nitrite reduc-
tase ~840–890 bp) was amplified from sediment DNA ex-
tracts using primers nirS-1F and nirS-6R (Braker et al.

Fig. 1 Location of sampling sites within the coastal wetlands of China
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1998). The details of the primers and PCR conditions are
shown in Table S2. The amplification products were visual-
ized by electrophoresis on 1.0 % agarose gels. The obtained
PCR products were purified using the Gel Advance gel ex-
traction system (Viogene, China), and cloned into the pUCm-
T Vector (Sangon, China). Then insert-containing
transformants were transformed into E. coli XL1-Blue for
growth. Approximate 100 clones were randomly screened
from each sample and sequenced with an ABI 3370XL
Prism genetic analyzer (Applied Biosystems, Canada).

Sequences were assembled, edited and put in order with
DNAstar Lasergene (DNAstar, USA). The nirS sequences were
analyzed in GenBank by BLAST (http://blast.st-va.ncbi.nlm.
nih.gov/Blast.cgi) to obtain reference sequences. All of the
obtained sequences were aligned with the ClustalX software
(Thompson et al. 1997). The Mothur program (http://www.
mothur.org/) was used to classify the sequences into one
operational taxonomic unit (OTU) with >95 % identity.
Phylogenetic tree was created by Mega 5 program with the
neighbor-joining method (Kumar et al. 2004). The reliability
of the tree topologies was estimated by performing 1000
bootstrapping replicates (Tamura et al. 2007).

The unique nucleotide sequences obtained in this study are
available, and have been deposited in GenBank database un-
der accession numbers of KU995338 to KU996352.

qPCR of nirS gene

The abundance of nirS gene fragment (425 bp) in sediments was
quantified in triplicate with primers cd3aF and R3cd (Throback
et al. 2004). The details of the primers and PCR conditions are
shown in Table S2. Plasmids containing cloned nirS PCR
amplicons were generated with Escherichia coli hosts by using
Qiagen Miniprep Spin Kit. The plasmids were diluted into a
series of gradient as standard curves. The concentration of orig-
inal plasmid was estimated with a Nanodrop-2000
Spectrophotometer (Thermo, USA). Quantification standard
curves were formed via platting the threshold cycle (Ct) versus
the log10 values of nirS gene copy numbers carried by the stan-
dard plasmids solutions, with strong linear relationship
(R2 = 0.9996) and high amplification efficiency (94.7 % in win-
ter and 100.1 % in summer). The standard curve ranged over 7
orders of magnitude of the standard plasmid’s concentrations
(1.71 × 103 to 1.71 × 109 copies per microliter). The melt curve
for standards and samples only had a single peak at 85.4 °C,
indicating that the fluorescent signals were obtained from spe-
cific DNA samples in all the process of quantitative PCR.

Statistics analysis

The biodiversity indicators (Shannon-Weiner and Simpson),
species richness Chao 1 estimator, and the rarefactions curves
were obtained with the Mothur program (Schloss et al. 2009).

The coverage for each constructed clone library was calculat-
ed using the follow method: the obtained OTUs number di-
vided by chao1 indicator (Mohamed et al. 2010).
Relationships between denitrifying bacterial community com-
positions and environmental indices were analyzed by the
Canoco (version 4.5) software using canonical correspon-
dence analysis (CCA) on the basis of the results of detrended
correspondence analysis (DCA) (Danovaro and Gambi 2002;
ter Braak 1988). Community classifications of sediment nirS-
based denitrifiers were explored with principal coordinates
analysis (PCoA) by the Qiime 1.9.0 software (Caporaso
et al. 2010). Pearson correlation analyses were conducted with
SPSS (version 16.0) software to explore correlations of envi-
ronmental variables with the richness and abundance of nirS-
harboring denitrifiers. Additionally, one-way analysis of vari-
ance (ANOVA)was performed to compare spatial and season-
al differences in nirS-encoding denitrifiers.

Results

nirS-based denitrifier diversity

The nirS gene sequences were successfully recovered from
sediment DNA extracts at all sampling sites. Clone libraries
were constructed for each site, containing 73 to 96 clones per
library (Table 1). This resulted in a total database of 1942 nirS
gene clones (Table 1). To date, these represented the most
widespread nirS gene clone library in China’s coastal wet-
lands. To analyze the diversity of nirS-based denitrifiers,
5 % divergence at the nucleotide level was used for nirS se-
quences to define OTU. In this study, 13 to 33 OTUs were
obtained in each individual clone library (Table 1), and a total
of 493 OTUs were identified. The library coverage was esti-
mated at between 91.5–99.2 %. The high coverage indicates
that the majority of the nirS-based denitrifier diversity was
obtained, which is further confirmed by the rarefaction analy-
sis (Fig. 2).

Based on the Shannon-Weiner and Simpson indices
(Table 1), the maximal nirS-type denitrifier richness was
found at site P6 in summer and P1 in winter where 30 and
33 OTUs were observed, respectively. The lack of significant
curvature (Fig. 2) indicated that the richness of distinct niS-
based sequences was not yet saturated in those two libraries.
The second high richness of nirS-type denitrifiers appeared at
site P10 in summer where 28 OTUs were obtained.
Additionally, relatively low biodiversity of nirS gene was re-
corded at site P8 in summer where only 13 OTUs were found.
The other 18 clone libraries had intermediate diversity, with an
average Shannon-Weiner index of 2.58. Overall, the diversity
of nirS gene showed a significant spatial difference (one-way
ANOVA, P = 0.001) along the coastal wetlands of China.
However, no distinctive seasonal shift was found between
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summer and winter (one-way ANOVA, P = 0.919), with av-
erage Shannon-Weiner indices of 2.59 and 2.57, respectively.

Community composition and distribution
of nirS-encoding bacteria

For the phylogenetic analysis, the nirS gene sequences
were grouped into 10 distinctly defined clusters (I to X)
on the basis of evolutionary distance (Fig. 3). In this
study, the levels of nucleotide clone identity ranged from
45 % to 100 %. The 1942 nirS gene sequences were
aligned with representative database sequences and had
high degree of identity (93.0–100.0 %) to the closest
matched sequences retrieved from the GenBank.
Phylogenetic analysis showed that a large proportion of
the unique OTUs matched with uncultured environmental
nirS assemblages. The majority of the closely matched
sequences in the GenBank were retrieved from sediment
env i ronmen t s , i n c lud ing Ha ihe R ive r e s t ua ry
(KC106788), Yangtze estuary (KF363218; EU236006;

KM892169; EU235754) (Zhang et al. 2014; Zheng et al.
2015), Bahia del Tobari estuary (KC614247), San
Francisco Bay estuary (GQ453730) (Mosier and Francis
2010), Bohai Gulf (JN257854), East Pacific sea
(GU348415), coastal sea in France (KJ640012) (Stauffert
et al. 2014), as well as coastal regions in Baltic sea
(DQ072204) (Hannig et al. 2006) and the South Pacific
(AJ811468) (Castro-Gonzalez et al. 2005). The nirS gene
sequences of cluster IX were closely related to the cultivated
denitrifiers of Proteobacteria Pseudomonadales (CP000304)
(90 % identity) (Yan et al. 2008).

All of the ten clusters corresponded to distinct groups in the
phylogenetic tree (Fig. 3). The cluster II contained the maxi-
mal amount of nirS gene sequences, occupying 26.6 % of the
total sequences (Fig. 4). However, the cluster V only
accounted for 0.6 % (Fig. 4). The clusters I, II, and IV were
discovered in all the 22 built clone libraries, including 1.1% to
65.2 % of nirS gene sequences. Of these ten clusters, no one
was unique to a particular site, and all the clusters included
sequences from four or more samples. The nirS sequences

Table 1 Diversity estimators of
nirS-encoding denitrifiers in the
coastal wetlands of China

Seasons Sites No. of clones OTUsa Shannonb Chao 1c 1/Simpsond Coverage (%)e

winter P1 85 33 3.17 36.1 21.12 91.5

P2 86 15 1.94 15.9 4.32 94.6

P3 93 20 2.59 21.3 11.50 94.1

P4 90 20 2.20 21.4 5.40 93.6

P5 87 25 2.88 25.8 15.52 97.0

P6 96 19 2.50 20.2 9.01 94.1

P7 85 18 2.19 19.1 5.61 94.2

P8 94 15 2.04 15.1 5.27 99.2

P9 90 26 2.84 27.2 12.75 95.8

P10 88 23 2.90 23.7 18.23 97.2

P11 89 30 3.00 30.5 14.50 98.5

Summer P1 88 23 2.71 23.5 11.60 98.0

P2 94 25 2.89 25.8 16.43 96.8

P3 87 20 2.45 20.6 7.68 97.1

P4 90 26 2.89 26.4 14.56 98.6

P5 73 24 2.93 25.0 16.95 96.0

P6 79 30 3.23 31.4 29.34 95.5

P7 89 14 1.68 14.1 2.84 99.0

P8 93 13 1.28 13.4 1.97 97.2

P9 91 23 2.72 24.1 11.31 95.4

P10 85 28 3.06 28.6 19.40 97.8

P11 90 23 2.66 24.4 11.06 94.4

a OTUs are defined based on 5 % nucleotide acid divergence
b Shannon–Weiner index. Higher number represents more diversity
c Nonparametric statistical predictions of total richness of OTUs based on distribution of singletons and
doubletons
d Reciprocal of Simpson’s diversity index. Higher number represents more diversity
e Percentage of observed number of OTUs divided by Chao1 estimate
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from high latitude habitats (P1 to P6) were the dominant type
in the clusters II, V, VIII, and X (Table S3), accounting for
61.0 % to 83.3 % of the nirS-based denitrifiers. However, in
the clusters VI and IX, the nirS sequences were co-dominated
by the low latitude sites (P7 to P11), accounting for 71.1 % to
84.8 %. Among all the 22 clone libraries, no one library was
dispersed throughout the phylogenetic tree, which generally
occupied 5 to 8 clusters.

Spatial and temporal distributions of nirS-harboring deni-
trifier community were statistically compared with the weight-
ed UniFrac PCoA analysis (Fig. 5). The first two principal
coordinates explained 42.91 % of the nirS-based denitrifier
community changes among all the sampling sites. The distri-
bution of nirS-based bacterial community did not show a sig-
nificant seasonal difference between summer and winter clone
libraries (Fig. S2), indicating that the nirS-encoding bacterial
community compositions were relatively stable in China’s
coastal wetland sediments. However, a significant latitudinal
shift was characterized in the distribution of denitrifier assem-
blages along the coastal wetlands (Fig. 5).

Quantification of nirS-based denitrifiers

The qPCR results indicated a geographically heterogeneous
distribution of nirS-encoding denitrifier abundance along the
coastal wetlands of China (one-way ANOVA, P < 0.001)
(Fig. 6). The copy numbers of nirS gene ranged from
3.1 × 106 to 3.7 × 107 copies g−1 dry sediment in summer
and 4.3 × 105 to 1.2 × 107 copies g−1 dry sediment in winter.
The highest copy number was found at the low latitude site P7
in summer, and the lowest copy number was detected at the
high latitude site P5 in winter. The average copy number of
nirS-encoding denitrifying community was slightly higher at
the low latitude sites (P7 to P11) than at the high latitude sites
(P1 to P6) (Fig. 6). Although no significant seasonal shift was
found (one-way ANOVA, P = 0.079), the nirS-encoding bac-
terial abundance tended to be higher in summer than in winter
(except for sites P6 and P11), with respective average abun-
dance of 9.0 × 106 and 2.9 × 106 copies g−1 dry sediment.

Relationships of nirS-encoding denitrifier community
dynamics with environmental factors

The relationships between the nirS-type denitrifier communi-
ties with environmental variables were tested by the canonical
correspondence analysis (CCA) (Fig. 7). The environmental
parameters in the first two CCA dimensions (CCA1 and
CCA2) provided 49.9 % of the cumulative variance of the
nirS-type denitrifying community-environment correlation.
The results showed that the nirS-based denitrifying communi-
ty structures in the sediments of China’s coastal wetlands were
significantly correlated to ammonium (P = 0.017, F = 2.89,
1000 Monte Carlo permutations) and temperature (P = 0.048,
F = 1.63, 1000 Monte Carlo permutations), which accounted
for 37.0 % of the total CCA expositive power. Although the
contribution of other investigated environmental variables (in-
cluding nitrate, nitrite, organic carbon, sulfide, salinity, organ-
ic nitrogen, median size, pH, and C:N ratios) were not signif-
icant (P > 0.05, 1000Monte Carlo permutations), the union of
these environmental factors accounted for additional 45.0 %
of the entire CCA expositive power.

The relationships of nirS-based bacteria diversity with en-
vironmental parameters were also analyzed with SPSS soft-
ware. The results showed that the diversity of nirS-based
denitrifying bacteria was positively correlated to organic ni-
trogen (R = 0.458, P = 0.032, N = 22) and negatively corre-
lated to C:N ratios (R = −0.540, P = 0.009,N = 22) (Table S4).
However, no significant correlations were found between
nirS-based denitrifier diversity and other environmental vari-
ables (including temperature, salinity, pH, sediment median
size, organic carbon, sulfide, ammonium, nitrite, and nitrate)
(P > 0.05).

In addition, Pearson correlation analyses indicated that the
nirS-based denitrifier abundance was only correlated with
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Fig. 2 Rarefaction analysis of nirS-encoding denitrifier communities in
summer andwinter, respectively. OTUswere defined by <5% divergence
in nucleotide sequence
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temperature (R = 0.420, P = 0.050), as compared with other
environmental variables (Table S4).

Discussion

This study examined the nirS-harboring denitrifier communi-
ty diversity, abundance, and distribution, which provides nov-
el insights into the denitrifier community dynamics and asso-
ciations with environment factors in the coastal wetlands of
China. The diversity of nirS-based denitrifiers in this study
was consistent with previous reports from other environmen-
tal ecosystems (Francis et al. 2013; Li et al. 2013). The ma-
jority of detected nirS sequences fell into numerous novel
phylogenetic lineages and OTUs, most of which might repre-
sent coastal wetland-specific nirS-encoding denitrifiers. All
nirS sequences shared considerable phylogenetic similarity
with sequences obtained from aquatic systems (marine/
estuarine/coastal sediments and hypoxia sea water; Fig. 3),
suggesting that all the microorganisms in this study derived
from coastal rather than terrestrial environments. The only
cultivated sequence is Proteobacteria Pseudomonadales
(Yan et al. 2008). However, most of the nirS-encoding
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genotypes observed in the present study were affiliated with
uncultured denitrifying strains. Within all the ten clusters,
several clusters (II, V, VI, VIII, IX, and X) showed a distinc-
tive latitudinal differentiation along China’s coastal wetlands
(Table S3), probably suggesting that the diverse denitrifiers
have different environmental adaptation strategies.
Furthermore, the community structure and distribution of
nirS-encoding denirifiers showed obvious latitudinal hetero-
geneity along the coastal wetlands of China on the basis of
statistical analyses (Fig. 5). This result indicates that temper-
ature may be an important environmental parameter shaping
the biogeographical distribution and composition of nirS-

based denitrifying communities in the coastal wetlands of
China. Furthermore, the latitudinal distribution pattern was
also supported by the CCA results (Fig. 7). Previous studies
have found that salinity is a dominant environmental variable
shaping the biogeographical distribution of denitrifiers (Abell
et al. 2010; Francis et al. 2013; Yoshie et al. 2004; Zheng et al.
2015), mainly by comparing different-salinity habitats.
However, samples in this study were collected from coastal
wetland sediments with relatively consistent salinity.
Therefore, we concluded that temperature rather than salinity
significantly contributed to the latitudinal distribution of nirS-
based denitrifiers. Interestingly, a similar distribution pattern
was found for the anaerobic ammonium oxidation (anammox)
community as well (Hou et al. 2015).

In addition to temperature, other biochemical indices can
also influence the distribution and diversity of nirS-encoding
bacterial communities. It should be noted that a diverse of
environmental factors may be significant in shaping the coast-
al wetland denitrifiers with complex interactions (Dang et al.
2009; Francis et al. 2013; Bulow et al. 2008). In the present
study, the ammonium concentriation also had significant con-
tribution to nirS-based denirifier community structure, which
may be attributed to the increased supply of oxidized nitrogen
through nitrification process and thus provides the electron
acceptor for denitrification (Avrahami et al. 2002). Similar
results have also been observed in the Yangtze estuary and
Jiaozhou Bay (Dang et al. 2009; Zheng et al. 2015).
Additionally, C:N ratios has been reported to have significant
impact on the denitrification activity, nitrite accumulation, and
microbial community composition (Her and Huang 1995;
Kim et al. 2008; Mosier and Francis 2010). The diversity of

Fig. 5 The UniFrac weighted PCoA analysis of nirS-encoding denitrifier
communities. S and W represent summer and winter samples,
respectively. Red and blue font represent samples from high and low
latitude sites, respectively
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Fig. 7 Canonical correspondence analysis for the correlations of
environment factors with the community structure of nirS-encoding
denitrifiers in both summer (red up-triangle) and winter (blue down-
triangle). Temp, OC, C:N, MΦ, NO3-N, NO2-N, ON, and NH4-N
represent temperature, organic carbon, C:N ratios, sediment mean size,
nitrate, nitrite, organic nitrogen, and ammonium, respectively
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nirS-based denitrifiers was also observed to negatively corre-
late with C:N ratios in this study. In addition, the nirS-based
denitrifier diversity was positively affected by organic nitro-
gen. Therefore, sediment with high nitrogen content may sup-
port the coexistence of diverse denitrifying bacteria. Also, the
effect of pH on shaping nirS-harboring community composi-
tion has been documented by Hallin et al. (2009), which is
likely due to the narrow pH ranges for optimal growth of
microorganisms (Rousk et al. 2010). However, no significant
relationship between pH and nirS-encoding denirifier compo-
sition was found in the present study. Bulow et al. (2008) have
indicated that the greatest control on the diversity of
denitrifying communities is environmental stability. Along
the coastal wetlands of China, the community of nirS-based
denitrifying bacteria did not display a statistically significant
seasonal shift between summer and winter, indicating that the
denitrifiers distribution reflects an adaption to site-specific
features.

The abundance of nirS-based denitrifiers demonstrated sig-
nificant spatiotemporal fluctuations in the coastal wetland sed-
iments of China. The copy numbers of nirS gene ranged from
4.3 × 105 to 3.7 × 107 copies g−1 dry sediment. The values are
within the ranges reported in the Colne estuary (~104 to 107

copies per gram of sediment), Chesapeake Bay (2 × 105 to
7 × 107 copies g−1 dry sediment), and San Francisco Bay
(5.4 × 105 to 5.4 × 107 copies g−1 dry sediment) (Bulow
et al. 2008; Mosier and Francis 2010; Smith et al. 2007).
Similar to the community structure of nirS-harboring denitri-
fiers, nirS gene abundance was also observed to be positively
correlated with temperature. Braker et al. (2010) reported that
temperature exerts a significant effect on the abundance and
composition of denitrifying communities in agricultural soil.
In general, temperature could either modify the function of
existing microorganisms or rebuild microbial communities,
and thus changes the fundamental physiologies which drive
biogeochemical processes (Schimel and Gulledge 1998).
Although it has been reported that multiple environmental
factors (e.g., organic matter, pH, nitrate, ammonium, and sed-
iment water) can affect the abundance of nirS gene (Dandie et
al. 2011; Dong et al. 2009; Kandeler et al. 2006), no signifi-
cant relationships were found between the nirS-encoding de-
nitrifier abundance and other environmental variables detect-
ed in this study (including ammonium, C:N ratios, nitrate,
nitrite, organic carbon, sulfide, salinity, organic nitrogen, me-
dian size, and pH). In addition, denitrifying bacteria abun-
dance tended to be slightly higher in summer than in winter,
even though there was no significant seasonal variation in the
nirS gene abundance. These results further demonstrate the
importance of temperature in shaping the dynamics of denitri-
fiers in the coastal wetlands of China.

Hou et al. (2015) reported that the denitrification rates
showed significant latitudinal heterogeneity along the coastal
wetlands of China (one-way ANOVA, p < 0.05) (Fig. 8), with

average rates of 98.82 μmol N kg−1 day−1 at the low latitude
sites (P7 to P11) and 72.39 μmol N kg−1 day−1 at the high
latitude sites (P1 to P6). Interestingly, it was observed that the
denitrification rates were significantly correlated with the
nirS-encoding denitrifier abundance (R = 0.548, P < 0.001)
(Fig. S3). The result is consistent with the previous report in
the San Francisco Bay estuary (Mosier and Francis 2010).
However, the denitrification rates were not significantly relat-
ed to the denitrifying community composition (R = −0.126,
P = 0.57) (Fig. S4). These relationships imply that the abun-
dance of denitrifiers, more than structure and diversity, pre-
dicts the activity of denitrifying community in the coastal
wetlands of China.

In conclusion, this study demonstrated the abundance,
composition, and distribution of nirS-based denitrifying com-
munities along the coastal wetlands of China. To date, the
present work represents the most systematic characterization
of nirS-type denitrifiers based on molecular effort in China’s
coastal wetland ecosystems. The composition and structure of
nirS-based denitrifier communities showed distinctive latitu-
dinal heterogeneity along the coastal wetlands of China. The
abundance of nirS gene varied between 4.3 × 105 and
3.7 × 107 copies g−1 dry sediment, with significant spatial
heterogeneity. However, there was no significant seasonal
shift in the abundance, structure, and distribution of nirS-
encoding denitrifiers. In this study, temperature was character-
ized as a key parameter in regulating the latitudinal distribu-
tion of denitrifier community abundance, composition, and
distribution. This research provides new insights into the dy-
namics of nirS-encoding denitrifiers in China’s coastal wet-
land ecosystems.
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