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  Abstract       To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast 
typhoon storm surge. However, typhoon surge is a complex nonlinear process that is diffi cult to forecast 
accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict 
the deviation in typhoon storm surge, in which data of the typhoon, upstream fl ood, and historical case 
studies were involved. With principal component analysis, 15 input factors were reduced to fi ve principal 
components, and the application of the model was improved. Observation data from Huangpu Park in 
Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable 
of predicting a 12-hour warning before a typhoon surge. 

  Keyword : typhoon; storm surges forecasts; principal component back-propagation neural networks 
(PCBPNN); Changjiang (Yangtze) River estuary 

 1 INTRODUCTION 

 Typhoon is a type of strong tropical cyclone 
generated in a tropical ocean, and is often accompanied 
by strong wind, heavy rain, and even storm fl ood. A 
typhoon making landfall can bring 100–300 mm, and 
sometimes 500–800 mm rainfall in just one day, and 
also the storm surge (abnormal rise of the water level 
near the coast) which make the coastal tide rise 5–6 m 
because of the strong wind and low pressure. It is 
even worse when the storm surge coincides with the 
astronomical high tide, which will cause higher water 
levels which will overfl ow to destroy the houses, 
farms and cities, and result in heavy casualties and 
property losses (Zhang and Cao, 1992). 

 In order to decrease the losses of casualties and 
properties caused by typhoon, the forecast of typhoon 
and storm tide is essentially important. Conventional 
methods for predicting the storm tide mainly include 
two types (Li, 1993). One is the empirical method and 

the other is the numerical model. To forecast the storm 
surge, Hansen (1956) presented a numerical model of 
fl uid dynamics to apply to the North Sea. Kawahara et 
al. (1982) proposed a two-step explicit fi nite element 
method to analyze the storm surge propagation. 
Jelesnianski and Shaffer (1992) applied the SLOSH 
model (Sea, Lake and Overland Surge from Hurricane) 
to forecasting the storm surge. However, given the 
complexity of typhoon effect, specifi ed typhoon 
models, accurate and detailed hydrodynamic 
equations, coastal topographical data, boundary 
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conditions, weather forecast, and elaborate and time-
consuming calculations are needed for the numerical 
simulation models (Abohadima and Rabie, 2002; 
Tseng et al., 2007). Unfortunately, the effi ciency and 
accuracy of numerical simulation cannot meet the 
requirement of typhoon surge forecasting in the 
absence of accurate and detailed topographical data 
and boundary conditions. Jan et al. (2006) attempted 
to establish empirical formulas for typhoon surge 
estimation according to the statistical analysis of the 
correlation between typhoon surge deviations and 
typhoon characteristics. To make use of the superiority 
of artifi cial neural networks (ANN) in overcoming 
the problem of exclusive and nonlinear relationships, 
Lee (2008) used back-propagation neural networks 
(BPNN) to establish a typhoon-surge forecasting 
model and predicted short-term typhoon surges 
considering typhoon parameters (wind speed, wind 
direction, central pressure) and astronomical tidal 
level as the input factors. In addition, You and Seo 
(2009) developed a cluster neural network model 
(CL-NN) to predict storm surges in all Korean coastal 
regions by combining neural network with 
agglomerative clustering. 

 In this research, a typhoon surge-deviation 
forecasting model is developed using a principal 
component back-propagation neural networks 
(PCBPNN). The forecasting model includes the 
upstream fl ood caused by typhoon rainfall and the 
historical surge deviation, as well as the typhoon 
characteristics. The tidal level data from Huangpu 
Park observation station in Shanghai, China are used 
to test the performance of the proposed PCBPNN 
model. 

 2 METHOD AND APPLICATION 

 With the capability to model both linear and 
nonlinear systems without the need to make any 
assumptions which are implicit in most traditional 
statistical approaches, some researches on the 
applications of ANN into forecasting the storm surge 
aim at integrating correlative factors infl uencing the 
typhoon storm surge, such as the surge, rainfall and 
fl ooding caused by a typhoon (Xue et al., 2005; Lee, 
2006, 2009; Li et al., 2006; Tseng et al., 2007; Bajo 
and Umgiesser, 2010). A typical three-layer network 
includes an input layer (I), a hidden layer (H) and an 
output layer (O). Each layer consists of several 
neurons that are connected by weights, thresholds, 
and transfer functions. To remove redundant 
information and raise the effi ciency of computation, 

the PCBPNN model is used to predict the typhoon 
induced surge deviation (Fig.1). The typhoon surge 
deviation at a time in a considered tidal station during 
a typhoon event can be expressed as the difference 
between the measured sea water level and the 
estimated astronomical tide level (Tseng et al., 2007). 
In the PCBPNN model, the data set of input factors is 
processed with principal component analysis (PCA) 
so that a set of uncorrelated principal components 
(PCs) can stand for most of information which 
original input factors contain and the dimension of the 
input data set can be reduced. 

 Assuming that we have  p  samples and  m  factors, 
making a  p    m  matrix  F : 

  F =[ F  1 ,  F  2 , ...,  F  m ],                (1) 
 By means of PCA, the original matrix  F  is 

transformed to the matrix composed of PCs that are 
the linear combination of the original factors. Then 
the transformed matrix is taken as the input into the 
network. During the fi rst phase in the network training 
process, the input is propagated forward through the 
network to compute the output values. This computed 
output is compared with its corresponding desired 
output, resulting in an error for each output unit. 
During the second phase, the errors in the output layer 
are propagated backward to the input layer through 
the hidden layer and the weights of connection are 
calculated and adjusted to minimize the output errors 
using the gradient descent method. 

 The error function of the output neurons is defi ned as: 
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 Fig.1 Structure of principal components back-propagation 
networks model 

 Fm represent the factors infl uencing typhoon surges, PCn represent the 
principal components, and Tp represent the target. 
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 where  T  j  and  O  j  are the values of the target and output, 
respectively, and  n  is the number of neurons in the 
output layer. More details of the BPNN algorithm can 
be referred to the literatures (Fausett, 1994; Bishop, 
1995; Rumelhart et al., 1986; Zhou and Kang, 2006). 
Because the BP algorithm has a low performance in 
training process, to accelerate the convergence of the 
error in the learning procedure, the momentum term 
with the momentum gain  α  is included in the error 
modifi cation process: 

 ( 1) ( ) [(1 ) ( ) ( 1)]ij ijk k D k D k          , (3) 

 where  D ( k ) and  D ( k –1) are the negative gradient at 
time  k  and time  k –1, respectively,  η  is the learning 
rate,  α  is momentum gain in the interval of [0, 1], and 
 ω  ij  is the weight connected the  i th neuron in the input 
layer with the  j th neuron in the hidden layer. At the 
same time, adaptive learning rate is also adopted to 
adjust the learning rate and increase the stability of 
the model. 

 Evaluation of the performance of a typhoon 
induced storm surge forecasting model should not 
only depend on the overall or average errors, but also 
on errors of the greatly high tide level (when the high 
tide is greater than 4.5 m) and the greatly high storm 
surge deviation (when the storm surge deviation is 
greater than 0.5 m), because they always cause more 
serious damages than normal tide. The three criteria 
involved in model performance evaluation are as 
follows: 

 (1) Root mean square error (RMSE) 
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 where  T  t  is the forecasted storm surge deviation,  T    t ′ is 
the observed storm surge deviation, and  n  is the 
number of neurons in the output layer.  

 (2) Coeffi cient of correlation (CC) 
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 where tT  is the average of forecasted storm surge 
deviation, and tT  is the average of observed storm 
surge deviation. 

 (3) Coeffi cient of effi ciency (CE)  
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 CE is used to evaluate the model performance, and 
CE of 1 indicates perfect forecast. 

 2.1 Study area and data collection 

 Shanghai is the biggest city in China, and it faces 
the East China Sea and lies to the east of the Taihu 
Lake, the south of the Changjinag (Yangtze) River 
estuary, and the north of Hangzhou Bay. The city is 
prone to storm-fl ooding caused by storm surge and 
rainfall due to the distribution of typical tidal estuary 
and plain river network. Affected by the East Asian 
monsoon, Shanghai suffers from 2–3 typhoons 
annually in summer. The city’s infrastructure, people’s 
lives, and properties are often threatened greatly by 
the meeting of strong wind, heavy rain, storm surge, 
and fl ood from the upper stream area. Crossing the 
central city, the Huangpu River is the main channel 
for the waters of Taihu Lake entering the Changjiang 
River, and it carries 78% of the Taihu Lake’s drainage. 
We select Huangpu Park observation station as the 
target station because it is located at the central region 
of Shanghai and its water level is of importance to the 
safety of Shanghai city. Located at the upstream of 
Huangpu River, Mishidu observation station is 
55.5 km distant from Huangpu Park observation 
station. The maximum speed of water fl ow in Huangpu 
River is 1.8 m/s when the tide ebbs, that is, it takes 
almost 11 hours for the fl ood to fl ow from Mishidu 
observation station to Huangpu Park observation 
station (Fig.2). There were 26 typhoons infl uencing 
Shanghai between 1999 and 2008, and we collected 
the typhoon characteristics (such as longitude, 
latitude, central pressure, maximum typhoon-near-
center wind velocity, forward speed, and heading) 
every 6 hours, and the tidal information (such as 
astronomical high tidal level, observed high tidal 
level, and empirically forecasted high tidal level, etc.) 
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 Fig.2 Map of study area and observation stations 
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in Mishidu observation station and Huangpu Park 
observation station twice in one day during the 
typhoon events in Shanghai. Based on the PCBPNN, 
the typhoon-induced storm surge forecasting model is 
constructed and validated using the collected data. 

 2.2 Determination of infl uencing factors and data 
preprocessing 

 Possible factors infl uencing typhoon surges include 
typhoon characteristics, local geographical 
characteristics and local meteorological condition in 
the vicinity of a particular tidal observation station 
(Tseng et al., 2007). The changes of typhoon 
characteristics and the local meteorological conditions 
at a given tidal station during a typhoon event are 
signifi cant, while the change of local geographical 
characteristics is usually small and negligible. 
Therefore, in this research, a PCBPNN-based 
typhoon-induced surge forecasting model is 
developed according to the typhoon characteristics 
and local meteorological conditions. 

 Considering the typhoon is a dynamic process, two 
series of typhoon characteristics before the forecasting 
time ( t ), i.e., the typhoon characteristics at the time of  
t -12 and  t -18, are taken into account. In addition, six 
typhoon characteristics are taken in the study, 
including the longitude ( F 1,  F 7), latitude ( F 2,  F 8), 
central pressure ( F 3,  F 9), maximum typhoon-near-
center wind velocity ( F 4,  F 10), forward speed ( F 5, 
 F 11) and heading ( F 6,  F 12). As the target station’s 
historical surge deviations inevitably infl uence the 
forecast of surge deviations, the historical surge 
deviations at the time of  t -12   ( F 13) and  t -24   ( F 14)   are 
also taken into account. In the meantime, the historical 
storm surge deviations at the time of  t  - 12 in Mishidu 
observation station ( F 15), which measure the height 
of surges above the astronomical tide relating to the 
upstream fl ood caused by typhoon rainfall, are 
considered. The target ( T ) in the output layer of the 
PCBPNN model is the typhoon surge deviation at the 
forecasting time ( t ) in the target observation station of 
Huangpu Park station. 

 We collect the typhoon data from 1999 to 2008, as 
well as storm fl ood data at the Huangpu Park 
observation station and Mishidu observation station 
during the same period. 251 grouped observations of 
the 15 variables extracted from the data of infl uencing 
factors from 1999 to 2006 are taken as the PCBPNN 
training sample, and 51 grouped observations of the 
15 variables extracted form the data from 2007 to 
2008 are taken to test the model. The values of the 

above-mentioned factors are standardized to eliminate 
the effect of different units, using the standard 
deviation equation: 

 ( ) /ij ij j jX X X s   , (7) 

 where  X  ij  is the original value of the  i th observation of 
the  j th variable, Xj is the average value for each 
column of the data matrix  X  ij ,  s  j  is the standard 
deviation, and ijX   is the standardized value. 

 For the typhoon heading ( F 6,  F 12), we take the 
north direction as 1, and all headings are transferred 
to 1–16 in clockwise order. The headings are divided 
into 16 bearings as shown in Fig.3. 

 Table 1 shows the correlation coeffi cients between 
the input factors ( F 1– F 15) and the target ( T ). The 
historical surge deviations at the Huangpu Park 
observation station ( F 13,  F 14) have signifi cant 
positive correlations with the target ( T ), and the 
correlation coeffi cients are 0.757 and 0.824, 
respectively. The historical surge deviations at the 
upstream station ( F 15), the Mishidu observation 
station, also have a positive correlation with the target 
( T ), although the correlation coeffi cient is smaller 
than those between  F 13,  F 14 and  T . A single typhoon 
characteristic ( F 1– F 12) has a low degree of correlation 
with the target ( T ), but the research (Jan et al., 2006; 
Lee, 2006) indicated that typhoon characteristics 
were the major factors infl uencing the surge deviation, 
and the potential infl uences of the typhoon 
characteristics on the surge deviation still need to be 
investigated. 
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 2.3 Model construction 

 The PCBPNN model is constructed to predict the 
typhoon-surge deviation 12-h ahead at the Huangpu 
Park observation station. After PCA is performed, the 
15 input factors are transformed into 5 principal 
components, which contain more than 95% 
information of the original factors. An optimal neural 
network structure is important to the performance of 
the typhoon-surge deviation forecasting. The 
adjustment of the model’s parameters is essential to 
increase the accuracy of the forecast. The parameters 
include the number of the hidden layer’s neurons, the 
learning rate ( η ), the momentum factor ( α ), and the 
training epochs. Table 2 presents the performance of 
different model structures using different combinations 
of the parameters. When designing the number of the 
hidden layer’s neurons, we refer to the following 
empirical equation (Zhou and Kang, 2006): 

 LS R S a   , (8) 
 where  S  is the number of neurons in the hidden layer, 
 R  is the number of neurons in the input layer,  S  L  is the 
number of neurons in the output layer, and  a  is an 
integral constant in the interval of [0, 10], which is 
fi xed by trial and error. In this study, the number of 
the input layer’s neurons is fi xed to fi ve, and the 
number of the output neuron is one, so the  S  is in the 
interval of [3, 13]. We select different numbers of 
hidden neurons (such as 4, 6, 8, 10, and 12), learning 
rate ( η ), and momentum factor ( α ) for trying, and fi nd 
that when  S  is set to 10,  η  is 0.01 and  α  is 0.9, the 
model has the optimal performance according to the 
index of RMES, CC and CE. In addition, the 
experiment results show that the increase of the 
epochs from 5 000 to 10 000 cannot improve the 
performance of the model. Consequently, we 
determine the parameters, i.e.,  S =10,  η =0.01,  α =0.9 
and Epochs=5 000 for the optimal model structure. 
Fig.4 illustrates the training process of PCBPNN 
model for typhoon surge deviation forecast, and this 
model is tested using the observations of the 15 
variables extracted from the data from 2007 to 2008. 

 3 RESULT AND DISCUSSION 
 Two standards are used to evaluate the prediction 

quality, namely the passing rate and the average error. 
The passing rate is the percentage of the qualifi ed 
predicting number to total predicting number, which 
was defi ned by the National Standardizing Committee, 
China in 2009, and calculated using the following 
equations: 

 QR=( m / n )×100%, (9) 
 where QR is the passing rate,  m  is qualifi ed predicting 
number, and  n  is total predicting number. According 
to the output of the testing samples, the passing rate of 
PCBPNN model is 85.43%, which is satisfactory. In 
addition, the average error is calculated as follows: 
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 where the  E  MA  is the average error,  T  t  and  T   t ′    are the 
forecasted and observed storm surge deviation, 
respectively. The average error of all the samples is 
0.120 m, and the average errors of the training sample 
and the testing sample are 0.110 m and 0.136 m, 
respectively (Figs.5 and 6). In addition, the average 
errors of the great tide (tide level>4.5 m) and the great 
surge deviation (surge deviation>0.5 m) are 0.148 m 
and 0.137 m, respectively, which are important to 
fl ood prediction. 

 The major contributing factors to each principal 
component can be discovered according to the 

 Table 1 Correlation coeffi cients between the factors and the 
target 

 Factors   F 1   F 2   F 3   F 4   F 5 

 Correlation coeffi cients 
with target ( T )  0.097   0.176   -0.149   0.167   0.056  

 Factors   F 6   F 7   F 8   F 9   F 10 

 Correlation coeffi cients 
with target ( T )  0.021   0.106   0.181   -0.128   0.143  

 Factors   F 11   F 12   F 13   F 14   F 15 

 Correlation coeffi cients 
with target ( T )  0.102   -0.018   0.757   0.824   0.409  

 Table 2 Performance of different model structures 

 Numbers of 
 hidden neurons   η    α   Epochs  RMSE 

(m)  CC  CE 

 4  0.01  0.9  5 000  0.170 0  0.860 0  0.700 0 

 6  0.01  0.9  5 000  0.150 0  0.890 0  0.770 0 

 8  0.01  0.9  5 000  0.150 0  0.900 0  0.800 0 

 10  0.01  0.9  5 000  0.137 8  0.921 4  0.840 2 

 12  0.01  0.9  5 000  0.160 0  0.890 0  0.790 0 

 10  0.01  0.6  5 000  0.147 4  0.904 8  0.805 1 

 10  0.01  0.3  5 000  0.168 2  0.879 8  0.761 9 

 10  0.05  0.9  5 000  0.146 9  0.908 6  0.813 0 

 10  0.10  0.9  5 000  0.166 1  0.877 5  0.753 5 

 10  0.30  0.9  5 000  0.157 0  0.900 3  0.800 3 

 10  0.01  0.9  10 000   0.142 4  0.911 8  0.823 2 
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principal component score coeffi cient matrix 
presented in Table 3. The PC1 mainly represents the 
information of the typhoon characteristics such as 
typhoon location ( F 1,  F 7), central pressure ( F 3,  F 9) 

and maximum typhoon-near-center wind velocity 
( F 4,  F 10), PC2 also represents the location of typhoon 
( F 1,  F 7), central pressure ( F 3,  F 9), and maximum 
typhoon-near-center wind velocity ( F 4,  F 10), PC3 
represents the location of typhoon ( F 2,  F 8) and the 

Start

Collect the data of input factors (F1–F15) and output target (T)

Standardize the values of input and output vectors

Calculate the principal components (PCs) of the input factors with PCA

Design the optimal model structure

Initialize all the weights and biases with random values

Calculate the output value for each observation of the input layer
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 Fig.4 Flow chart of training process of PCBPNN model for typhoon surge deviation forecast 
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historical surge deviations information ( F 13,  F 14, 
 F 15), PC4 stands for the forward speed of typhoon 
( F 5,  F 11) and the historical surge deviations ( F 13, 
 F 14,  F 15), and PC5 represents the heading of typhoon 
( F 6,  F 12). 

 The weights between the neurons in the input layer 
and the neurons in the output layer are presented in 
Table 4, which refl ect the degree of impacts of the fi ve 
input factors on the output. It can be seen that the 
weights of the fi ve PCs are almost equal, while the 
PC1 has relatively high degree of impacts on the 
output. Thus, the typhoon characteristics are key 
factors to forecast the surge deviation, especially the 
location of typhoon which also contributes to the PC2 
and the PC3, heading which also contributes to the 
PC5, central pressure, and maximum typhoon-near-
center wind velocity. In the meantime, the historical 
surge deviations in the target observation station and 
the upstream observation station, which contribute to 
the PC3 and the PC4, also infl uence the accuracy of 
predicting the typhoon induced storm surge deviation 
in the target station. 

 4 CONCLUSION 

 Due to the stochastic nature and complexities of 
wind inducing surge, the physical mechanism of 
storm surge generation is far from being understood 
at present. Conventionally empirical methods or 
numerical forecasting models for typhoon induced 
storm surge forecast are time-consuming and unable 
to include all infl uencing factors. Therefore, the 
development of novel effective approaches to 
forecasting accurate typhoon induced storm surge is 
an important task to alleviate signifi cant damage to 
life and property in coastal areas. In this research, an 
alternative principal components back-propagation 
neural network (PCBPNN) model is constructed for 
typhoon surge deviation forecast, which takes into 
account not only the impact of typhoon wind 
characteristics on the surge, but also that of the rainfall 
and the upstream fl ood. With comprehensive factors, 
the proposed model has performed well in forecasting 
the typhoon surge deviation 12-h ahead when it is 
applied to Shanghai, a coastal city in China. The 
results indicate that the PCBPNN model is capable of 
typhoon surge deviation forecasting. Moreover, the 
historical surge deviations in the target station and the 
upstream station, and the typhoon characteristics, 
especially the location, central pressure and maximum 
typhoon-near-center wind velocity, are found to be 
the major determinant factors in the typhoon surge 
deviation forecast. 
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 PC3  -0.203  0.070  -0.480  -0.466  -0.291 

 PC4  -0.548  0.040  0.324  0.345  0.277 

 PC5  -0.205  -0.560  0.005  -0.085  -0.277 
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 Weights  0.587 7  0.426 9  0.339 1  0.480 9   0.493 4 
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